Complexity of the Two-Variable Fragment with (Binary-Coded) Counting Quantifiers

نویسنده

  • Ian Pratt-Hartmann
چکیده

We show that the satisfiability and finite satisfiability problems for the two-variable fragment of first-order logic with counting quantifiers are both in NEXPTIME, even when counting quantifiers are coded succinctly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity of the Two-Variable Fragment with Counting Quantifiers

The satisfiability and finite satisfiability problems for the two-variable fragment of firstorder logic with counting quantifiers are both in NEXPTIME, even when counting quantifiers are coded succinctly.

متن کامل

Extending Two-Variable Logic on Trees

The finite satisfiability problem for the two-variable fragment of first-order logic interpreted over trees was recently shown to be ExpSpace-complete. We consider two extensions of this logic. We show that adding either additional binary symbols or counting quantifiers to the logic does not affect the complexity of the finite satisfiability problem. However, combining the two extensions and ad...

متن کامل

Complexity of the Guarded Two-Variable Fragment with Counting Quantifiers

We show that the finite satisfiability problem for the guarded twovariable fragment with counting quantifiers is in EXPTIME. The method employed also yields a simple proof of the result obtained in Kazakov [6], that the satisfiability problem for the guarded two-variable fragment with counting quantifiers is in EXPTIME.

متن کامل

Data-Complexity of the Two-Variable Fragment with Counting Quantifiers

The data-complexity of both satisfiability and finite satisfiability for the two-variable fragment with counting is NP-complete; the data-complexity of both query-answering and finite query-answering for the two-variable guarded fragment with counting is co-NP-complete.

متن کامل

Two-variable Logic with Counting and a Linear Order

We study the finite satisfiability problem for the two-variable fragment of first-order logic extended with counting quantifiers (C) and interpreted over linearly ordered structures. We show that the problem is undecidable in the case of two linear orders (in the presence of two other binary symbols). In the case of one linear order it is NExpTime-complete, even in the presence of the successor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره cs.LO/0411031  شماره 

صفحات  -

تاریخ انتشار 2004